Mechanical and Electrochemical Effects of 2° Phase Formation on SOFC Anode Performance

Walker, Sofie and Amendola Research Groups Chemistry and Biochemistry/Mechanical and Industrial Engineering Montana State University





Program Officer: Joe Stoffa

DE-FE-0026192



Mechanical and Electrochemical Effects of 2° Phase Formation on SOFC Anode Performance

Walker, Sofie and Amendola Research Groups Chemistry and Biochemistry/Mechanical and Industrial Engineering Montana State University













# Challenges that limit Ni/YSZ anode performance

1. Mechanical stress induces electrode/electrolyte cracking and delamination





2. High temperatures promote catalyst coarsening



As reduced



After 5 hrs at 800°C

3. Ni catalysts susceptible to contaminants and carbon accumulation



Pristine anode



Anode following 2 hrs exposure to CH<sub>4</sub>



### <u>A serendipitous observation – Al<sub>2</sub>TiO<sub>5</sub> & Ni infiltration withYSZ scaffold</u>



Infiltrated, electrolyte supported MEA's (low Ni loadings, ~20%) Anodes without ALT failed immediately

Adapted from C. H. Law and S. S. Sofie J. Electrochem. Soc. 158 (2011) B1137.

#### <u>A serendipitous observation – ALT infiltrated Ni-YSZ anode</u>



Less coarsening of Ni particles when ALT is present.

Adapted from C. H. Law and S. S. Sofie J. Electrochem. Soc. 158 (2011) B1137)

# <u>A serendipitous observation – ALT infiltrated Ni-YSZ anode</u>



High resolution TEM/EDS image of Ni/YSZ sample impregnated with  $Al_2TiO_5$  and then heated to 1400°C. Areas 1 and 3 are rich in both Ni and Al, while Area 2 is rich in Zr and Ti.

## Could ALT (or other materials) serve as chemical anchors?



High resolution TEM/EDS image of Ni/YSZ sample impregnated with  $Al_2TiO_5$  and then heated to 1400°C.

Areas 1 and 3 are rich in both Ni and Al, while Area 2 is rich in Zr and Ti.

Images support mechanism of 2° phase formation



Mechanism(s)?

Scalable?

Does processing matter?

How is performance affected?

# Project Objectives of Phase I

- Identifying the most effective means of introducing 2° precursors to traditional Ni-YSZ cermet structures and optimal loadings
- Determining the optimal thermal conditioning procedures that promote 2° phase formation
- Quantifying the effects of 2° phases on the electrochemical performance and durability of SOFC anodes using operando and ex situ techniques.



# Project Objectives of Phase I

- Identifying the most effective means of introducing 2° precursors to traditional Ni-YSZ cermet structures and optimal loadings
- Determining the optimal thermal conditioning procedures that promote 2° phase formation
- Quantifying the effects of 2° phases on the electrochemical performance and durability of SOFC anodes using operando and ex situ techniques.

#### The answer you want depends on the question you ask!



# Scope of Work – Phase I

- Anode fabrication Ni-YSZ (8% yttria) seeded with Al<sub>2</sub>TiO<sub>5</sub> (ALT) through mechanical mixing and via solution phase infiltration of pre-formed anodes. Both approaches will be tested for different ALT loadings (1-10% by mass)
- Mechanical and materials testing Coefficient of thermal expansion, elastic behavior, and fracture characteristics of both as prepared and chemically reduced samples
- Operando electrochemical testing and spectroscopic monitoring Voltammetry, EIS and Vibrational Raman microscopy will characterize the high temperature behavior of the anchored Ni catalysts X-ray diffraction and ionization techniques will identify stoichiometry, structure, and oxidation state(s).





# Scope of Work – Phase I

- Anode fabrication Ni-YSZ (8% yttria) seeded with Al<sub>2</sub>TiO<sub>5</sub> (ALT) through mechanical mixing and via solution phase infiltration of pre-formed anodes. Both approaches will be tested for different ALT loadings (1-10% by mass)
- Mechanical and materials testing Coefficient of thermal expansion, elastic behavior, and fracture characteristics of both as prepared and chemically reduced samples
- Operando electrochemical testing and spectroscopic monitoring Voltammetry, EIS and Vibrational Raman microscopy will characterize the high temperature behavior of the anchored Ni catalysts X-ray diffraction and ionization techniques will identify stoichiometry, structure, and oxidation state(s).



# An ambitious agenda - a lot of space to explore

- Given: Ni/YSZ cermet anode (50% Ni by mass)
- Electrolyte supported button cells (mostly)
- Dry  $H_2$ , 800°C



### Chemistry in ALT-doped Ni-YSZ anodes



## Chemistry in ALT-doped Ni-YSZ anodes



D. R. Driscoll, et al. "Enhancement of High Temperature Metallic Catalysts: Aluminum Titanate in the Nickel-Zirconia System" *Applied Catalysis A* **527** 36-44 (2016).

M. D. McIntyre, et al. "*In situ* Formation of Multifunctional Ceramics: Mixed Ion-Electron Conducting Properties of Zirconium Titanium Oxides" *submitted to J. Materials Chemistry A.* 

M. M. McCleary, et al. "Effect of Aluminum Titanate  $(Al_2TiO_5)$  doping on the mechanical performance of Solid Oxide Fuel Cell Ni-YSZ Anode", "*submitted to Fuel Cells* 

D. R. Driscoll, et al. "Aluminum Oxide as a Beneficial Additive to SOFC anodes" in preparation.

# Chemistry in ALT-doped Ni-YSZ anodes





2° phases segregate – true for mechanically mixed and infiltrated

ALT is a sintering aid (~90% theoretical density of NiO/YSZ/ALT mixtures)

 $2^{\circ}$  phases appear to serve different functions

Electrochemical degradation is slowed with ALT

Echem performance depends on processing details (infiltrated v. mech. mixed)

# Strength testing



- NiO-8YSZ (66% NiO by mass)
- 400 nm YSZ grains
- 350 nm NiO (**black**) or 4 µm NiO (**green**)
- Oxidized and <u>reduced</u> samples
- 30 mm x 5 mm x 2 mm
- $\geq$  30 independent measurements





 $\sigma_{fs} = \frac{3F_fL}{2bd^2}$  F<sub>f</sub> = applied load at failure  $\sigma_{fs}$  = flexural strength or Modulus of Rupture (MOR)

# Modulus of rupture (MOR) results - NiO/YSZ (reduced)



- MOR data fall for reduced samples falls within literature bounds
- MOR for green Ni/YSZ coupons is 125 ± 21 MPa
- MOR for 'green' Ni/YSZ/10% ALT coupons is 187 ± 18 MPa
- MOR for **black** Ni/YSZ behavior similar to **green**

NiO/YSZ and Ni/YSZ cermet MOR is 80-130 MPa (A. Nakajo, et al. Ceram. Int. 38 (2012) 3907) (M. Radovic and E. Lara-Curzio, Acta Mater. 52 (2004) 5747)

# <u>Strength testing – green NiO/YSZ (mechanically mixed)</u>

| GREEN (4 μm)                 | 0 wt%<br>ALT | 1 wt%<br>ALT | 5 wt%<br>ALT | 10 wt%<br>ALT |  |  |
|------------------------------|--------------|--------------|--------------|---------------|--|--|
| Oxidized (NiO/YSZ)           |              |              |              |               |  |  |
| MOR (MPa)                    | 100          | 136          | 226          | 150           |  |  |
| Strength Increase<br>(%)     | N/A          | 36           | 126          | 50            |  |  |
| Standard Deviation           | 24.9         | 44.0         | 29.9         | 23.4          |  |  |
| Weibull Modulus              | 5.6          | 6.9          | 6.9          | 7.7           |  |  |
| Density (g/cm <sup>3</sup> ) | 6.3          | 6.4          | 6.2          | 5.9           |  |  |
| Reduced (Ni/YSZ)             |              |              |              |               |  |  |
| MOR (MPa)                    | 125          | 151          | 164          | 187           |  |  |
| Strength Increase<br>(%)     | N/A          | 21           | 31           | 50            |  |  |
| StandardDeviation            | 21.3         | 29.1         | 22.3         | 17.6          |  |  |
| Weibull Modulus              | 7.5          | 5.6          | 8.6          | 10.6          |  |  |
| Density (g/cm <sup>3</sup> ) | 6.7          | 6.7          | 5.5          | 5.8           |  |  |

# <u>Strength testing – green NiO/YSZ (mechanically mixed)</u>

| GREEN (4 μm)                 | 0 wt%<br>ALT | 1 wt%<br>ALT | 5 wt%<br>ALT | 10 wt%<br>ALT |                      |  |
|------------------------------|--------------|--------------|--------------|---------------|----------------------|--|
| Oxidized (NiO/YSZ)           |              |              |              |               |                      |  |
| MOR (MPa)                    | 100          | 136          | 226          | 150           |                      |  |
| Strength Increase<br>(%)     | N/A          | 36           | 126          | 50            |                      |  |
| Standard Deviation           | 24.9         | 44.0         | 29.9         | 23.4          |                      |  |
| Weibull Modulus              | 5.6          | 6.9          | 6.9          | 7.7           |                      |  |
| Density (g/cm <sup>3</sup> ) | 6.3          | 6.4          | 6.2          | 5.9           |                      |  |
| Reduced (Ni/YSZ)             |              |              |              |               |                      |  |
| MOR (MPa)                    | (125)        | 151          | 164          | ( 187 )       | Still ~50% increase! |  |
| Strength Increase<br>(%)     | N/A          | 21           | 31           | 50            |                      |  |
| StandardDeviation            | 21.3         | 29.1         | 22.3         | 17.6          |                      |  |
| Weibull Modulus              | (7.5)        | 5.6          | 8.6          | (10.6)        |                      |  |
| Density (g/cm <sup>3</sup> ) | 6.7          | 6.7          | 5.5          | 5.8           |                      |  |

# <u>Strength testing – green NiO/YSZ (mechanically mixed)</u>

| GREEN (4 μm)                 | 0 wt%<br>ALT | 1 wt%<br>ALT | 5 wt%<br>ALT | 10 wt%<br>ALT |                      |
|------------------------------|--------------|--------------|--------------|---------------|----------------------|
| Oxidized (NiO/YSZ)           |              |              |              |               |                      |
| MOR (MPa)                    | 100          | 136          | 226          | 150           |                      |
| Strength Increase<br>(%)     | N/A          | 36           | 126          | 50            |                      |
| Standard Deviation           | 24.9         | 44.0         | 29.9         | 23.4          |                      |
| Weibull Modulus              | 5.6          | 6.9          | 6.9          | 7.7           |                      |
| Density (g/cm <sup>3</sup> ) | 6.3          | 6.4          | 6.2          | 5.9           |                      |
| Reduced (Ni/YSZ)             |              |              |              |               |                      |
| MOR (MPa)                    | (125)        | 151          | 164          | (187)         | Still ~50% increase! |
| Strength Increase<br>(%)     | N/A          | 21           | 31           | 50            | L                    |
| StandardDeviation            | 21.3         | 29.1         | 22.3         | 17.6          |                      |
| Weibull Modulus              | (7.5)        | 5.6          | 8.6          | (10.6)        |                      |
| Density (g/cm <sup>3</sup> ) | 6.7          | 6.7          | 5.5          | 5.8           |                      |

- Mechanical strength benefit due to ALT doping does not dependent on NiO powder size
- MOR scales with ALT amount
- All of the reduced material MOR fall above the maximum value found in literature (130 MPa)

# New sub-micron materials on Ni-YSZ surfaces



Micro NiO-YSZ + 0, 1, 5, and 10 wt% ALT (Oxidized)

- New phase development with the addition of ALT which persist after reduction
- Phase amount proportional to ALT doping amount

# New sub-micron materials on Ni-YSZ surfaces



Micro Ni-YSZ + 0, 1, 5, and 10 wt% ALT (Reduced)

- New phase development with the addition of ALT which persist after reduction
- Phase amount proportional to ALT doping amount



- Ti and Zr are spatially associated (Zr<sub>5</sub>Ti<sub>7</sub>O<sub>24</sub> from XRD and Raman)
- Al and Ni are associated (NiAl<sub>2</sub>O<sub>4</sub>)



#### Further evidence from TEM and APT (at EMSL)





Bounding box dimensions: 93.0 × 91.7 × 238.8 nm<sup>3</sup>



Further evidence from operando Raman spectroscopy - Ni/Al rich areas



- Raman spectroscopy identifies  $NiAl_2O_4$  as a stable species up to 800°C in air
- Heterogeneously dispersed across surface



2 pin

#### Further evidence from operando Raman spectroscopy – Zr/Ti rich areas



- Raman spectroscopy (and XRD) identifies  $Zr_5Ti_7O_{24}$  as a stable species up to 800°C
- $Zr_5Ti_7O_{24}$  stable under oxidizing and reducing conditions.
- Heterogeneously dispersed across surface

#### <u>ALT as a sintering aid for NiO-YSZ:</u>



• Ni-YSZ cermet anodes with ALT mixed in mechanically

- Sintering density v. temperature measured via dilatometry
- Absolute density changes with composition; most enhanced effects with 5% ALT
- No dramatic changes observed in microstructure.





# How do the ALT-doped anodes behave?

# How do the ALT-doped anodes behave?

- Electrolyte supported (2.5 cm diam; 300 µm thick)
- Mechanically mixed anode material (NiO, YSZ, ALT)
- Xylene/Ethylene glycol suspension; ball milled
- Sprayed, Sintered to 1400°C (~50 μm thick)
- LSM/YSZ cathode
- Operate at 800°C and dry  $H_2$
- Linear sweep voltammetry
- Constant polarization (0.7 V)

#### **Experiments:**

- Degradation at constant polarization (24-120 hrs)
- Electrochemical impedance spectroscopy (EIS)
- Operando Raman spectroscopy







#### Details:

#### Performance (0% vs. 2% ALT)



2% ALT cell shows ~2x better performance & less degradation

# Performance vs. % loading (mechanically mixed)



# Quantifying degradation

- Develop empirical curve-fitting algorithm
- Fit all degradation plots with R-squared value of 0.95 or better.
- Degradation rates are determined from curve fit, and normalized with respect to current output of fuel cell at that time...
- Curve-fitting equation

• 
$$I(t) = a_0 c_0 \cdot \frac{1}{t} + a_1 c_1 \cdot \sqrt{\frac{t}{t_0 - t}} + a_2 c_2 \cdot \tan(at - b)^{-1} + a_3 c_3 \cdot \frac{I_{Max}}{1 + \exp(-at + b)}$$

• Derivative

• 
$$R(t) = \frac{-a_0c_0}{t^2} + \frac{a_1c_1 \cdot t_0\sqrt{t_0 - t}}{2\sqrt{t} \cdot (t - t_0)^2} + \frac{a_2c_2 \cdot a}{(b - at)^2 + 1} + \frac{a_3c_3 \cdot a \cdot I_{Max} \cdot \exp(b - at)}{(1 + \exp(b - at))^2}$$

• Normalized Degradation Rate: 
$$\frac{dI_{Norm}}{dt} = \frac{R(t)}{I(t)}$$

- Positive 'degradation' rates = performance improvement
- Negative degradation rates = performance decline

# Quantifying degradation



#### Empirical fit & iteration converge to observed behavior

# Quantifying degradation



Degradation rates can be reported accurately and updated

# Mechanical mixing vs. infiltration



- Infiltrated cells show improved electrochemical performance
- Degradation rates both converge to ~-0.25%

| Green Ni-YSZ |                                           | Degradation Rate (%-Hr <sup>-1</sup> ) |       |       |       |       |       |
|--------------|-------------------------------------------|----------------------------------------|-------|-------|-------|-------|-------|
|              | I <sub>max</sub><br>(mA/cm <sup>2</sup> ) | 5 Hr                                   | 10    | 15    | 20    | 30    | 40    |
| 0% ALT       | 129                                       | -1.62                                  | -1.03 | -0.85 | -0.81 |       |       |
| 5% ALT MM    | 52                                        | -1.39                                  | -0.51 | -0.27 | -0.20 | -0.24 | -0.21 |
| 5% ALT Inf   | 157                                       | +1.60                                  | -0.05 | -0.27 | -0.24 | -0.26 | -0.23 |

# Degradation mechanically mixed vs. infiltrated



ALT added by mechanical mixing predicts optimal concentration ~1–4 wt.% ALT

ALT added by INFILTRATION predicts optimal concentration ~3-6 wt.% ALT

#### Performance (0% vs. 2% ALT)







Qualitative differences in EIS imply different charge transfer mechanisms

### Phase I - Accomplishments

- Stronger anode materials 50% enhancement with ALT
- Denser anode materials (optimized at 5% ALT mech. mixed)
- Operando electrochemical studies (enhanced at low % ALT if mech. mixed)
- Operando electrochemical studies (enhanced at medium % ALT if infiltrated)
- (Test commercial materials)





#### Raw materials from Fuel Cell Energy

0% ALT (8 YSZ & 3 µm NiO)



4% ALT mech mixed (8 YSZ & 3 µm NiO)



#### Raw materials from Fuel Cell Energy

0% ALT (8 YSZ & 3 µm NiO)



# Future work

1. Role of individual additives?  $(Al_2O_3 vs. TiO_2)$ 





#### Future work

2. Resilience to electrochemical and environmental redox cycling



# Acknowledgements

Joe Stoffa & NETL-SOFC staff





Roberta Amendola



Stephen Sofie

Dr. David Driscoll (Sofie) Clay Hunt (Sofie)

Madisen McCleary (Amendola)

Dr. Melissa McIntyre (Walker)

Kyle Reeping (Walker)

Märtha Welander (Walker)



#### Dr. Ali Torabi, Fuel Cell Energy



## <u>Tasks – Phase I</u>

- Fabricating anodes with ALT (0 10%)
- Map effects of temp and sintering rates on 2° phases
- Test mechanical strength
- Identify new materials that form
- *Operando* electrochemical studies
- Operando vibrational Raman spectroscopy
- (Test commercial materials)



## <u>Tasks – Phase I</u>

- Fabricating anodes with ALT (0 10%)
- Map effects of temp and sintering rates on 2° phases
- Test mechanical strength
- Identify new materials that form
- *Operando* electrochemical studies
- Operando vibrational Raman spectroscopy
- (Test commercial materials)

